Unified Engineering

Spring 2008

Signals and Systems Problems S13, S14, S15

Reading: O\&W-9.1, 9.2, 9.9
S13) Determine the Laplace transform (unilateral), and the region of convergence for each of the following functions of time
a) $x(t)=e^{-2 t}+e^{-3 t}$
b) $x(t)=e^{2 t}+e^{3 t}$
c) $x(t)=e^{-4 t}+e^{-5 t} \sin (5 t)$
d) $x(t)=t e^{-2 t}$
e) $x(t)= \begin{cases}1 & 0<t \leq 1 \\ 0 & \text { elsewhere }\end{cases}$
f) $x(t)= \begin{cases}t & 0<t \leq 1 \\ 2-t & 1<t \leq 2\end{cases}$
g) $x(t)=\delta(t)+u(t)$
h) $x(t)=\delta(3 t)+u(5 t)$

S14) Create the pole/zero plot for each of the Laplace transforms that you derived in S13

S15) A LTI system with input $x(t)$ and output $y(t)$ is described by the following differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=x(t)
$$

Use Laplace transforms to determine the output if the input and initial conditions are

$$
x(t)=u(t) \quad y(0)=\left.1.0 \quad \frac{d y(t)}{d t}\right|_{t=0}=0
$$

